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The plasma is inviscid, cool, and not thermally conducting; it flows in
a channel of constant cross section. The solution isderived by the small-
parameter method, for which purpose the magnetic interaction N is
used. There have been previous studies of the uansient-state flow of an
inviscid and thermally nonconducting plasma in crossed electric and
magnetic fields [1-3]. A plasma of infinite conductivity has been con-
sidered [1], as well as flow involving entropy change in an MHD system
with strong electromagnetic fields [2, 3].

Consider the one~dimensional nonstationary flow of
an inviscid plasma that conducts electricity but not
heat, which has a small magnetic Reynolds number
R < 1), in a channel of constant cross section in an
MHD converter,
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The system of dimensionless equations for magnetic
gasdynamics takes the form
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in which N is the parameter for the magnetic inter-
action. The dimensionless quantities in (1) are in~
troduced via the following relations:
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in which R is the resistance of the load, while the
other symbols are as usual. The subscript 0 denotes
guantities at the entrance to the channel,

In the general case, system (1) must be supple-
mented by relationships for the compressor, the exit
system, and the total current I as a function of load
voltage.

Here we consider only (1), with the following initial
and boundary conditions:

p=p), v=v(=), p=p() for:=0,

p= Fi(t), .P=Fa(t) for z=o0,
p=F;3(t) forz=1, (3)

in which p{), v(x), and p(x)are solutions tothe steady-
state problem, while Fy(t), Fy(t), and F4(t) are given
functions. *

If B = const, the voltage U for continuous electrodes
is a function of time only, U = U(t); butif B = B(t), we
cannot have U(t) as an arbitrary time function, since it
is dependent on B and on the load resistance R.

We use the equation of motion to transform the
energy equation and also use Ohm's law to eliminate
the current density from (1). Then
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System (4) contains the parameter N, which is
small (N < 1) in many cases of practical interest, We
therefore seek the golution as series expansions of
the unknown functions in powers of N [4]:

Z=Zo(1', t)+NZl(I, t)+N2z2(x, t)+---, (5)

in which z is p, p, orv, z;is py, py, Or vy, ..., and
zy(x,t) is the solution of the nonstationary problem for
zero field.
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*The form of the boundary conditions is dependent

on the problem; for example, we may be given the gas
flow rate G = G(t), i.e., the relation of velocity to
density, or alternatively, the relation between the
pressure, velocity, and density, or other relations
between the parameters of the gas at the inlet and
outlet.
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Consider the flow in a channel when the gas param-
eters at inlet and outlet are not dependent on time,
i.e., Fy, ¥y, and F3 in (3) are constants. Then

po (2, t) = p, = const,

oo (z, t) =1, vz, 1) = 1.
Substitution of (5) into (4) and matching of coeffi-
cients for identical powers of N gives us a set of
linear systems of first-order differential equations
for the functions zy, 73, ..., Zy. For the z; we have
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For the z, we may derive an analogous system in
whose right-hand part U and B are accompanied by
z{, ..., Zn-1 and derivatives of these, so the systems
may be solved successively.

Linear transformation of the unknown functions [5]
gives

p1= G (w, —wy, vy =w, +wy,

p1 =t Wy —wy) — awy , (7)

and the system of equations acquires the canonieal
form
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in which a; is the speed of sound at the entry to the
channel. As all the Aj are real numbers, system (8)
is a hyperbolic one, and through each point in the xt-
plane pass the three real characteristics (Fig. 1)

defined by
drfdi = 1 — a, (Cy),

dzfdt = 1 + ay (Cs), drfdt =1 (Cy). (9
System (8) is equivalent [6] to a system of integral
equations
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in which Cj is the part of the corresponding char-
acterigtic from (x,t) to the intersection at (xij,0) or
(0,ti) with the x- or t-axis, respectively (Fig. 1).
The functions wi(xj, 0) or w(0,¢;) are deduced from
the initial or boundary conditions.
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If the electrical conductivity o = const, while U(t)
is an analytic function, then system (10) can be
integrated, which solves the problem, because p, p,
and v are found via (7) and (5).

If the change in conductivity cannot be neglected,
system (10) is solved by successive approximation,
with the zeroth approximation taken as o (x), the result
for the steady-state problem. The method of finite
differences [5] may also be used to solve system (8).

As an example we consider the case in which B and o are constant,
while

U=U,+a. (11

We assume that the pressure and density (temperature) at the inlet
are constant, while at the exit there is a constant pressure equal to the
pressure p, for U = Uy,

We use the boundary conditions of (3) and expansion (3) with

Py = p -t Yy 02 (14 Yy p9*/ kp) (12)

to get the boundary conditions for this problem as

p=0 p=0 for z=0,
s =BpF o+ yu  for z=1,
pr=pi(2), n=7rn(z), p=p (s for =0 (13)

in which py(x), pyx), and vy(x) are derived from the solution to the
steady-state problem for U = U, while
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Then system (13) allows us to derive the initial and boundary con~
ditions for wy as well as the initial conditions for wy and wp. It is more
complicated to derive the boundary conditions for wy and wy. Figure 2
shows the regions formed by families C; and C, of characteristics inthe
xt-plane.
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The function we(xj, 0) is derived via the initial conditions in inte~
grating (10) in regions 1~3; wy(x;, 0} in regions 1-2 is derived similarly.
The boundary conditions at x = 0 for wy(0, tj) in regions 2, 4, and § are
derived via (7) and (13) together with the known values of wy in region
1~2 with x = 0, The boundary conditions at x = { for w, in regions 3,

4, and 6 are derived similarly, and so on,

After integration of (10) throughout the region of interest via (5)and
(7), we derive v(x, t), p(x,t), and p(x, t) and calculate the total current,
the load resistance, and the gas flow rate from

1 ,
I(t)=bS;‘(z,t)dw, Gz, ty=p(zBv(z 1),
0

R(t)=U (@) {b § [0z, &) — U ()] dm}—l_
o

Figure 3 shows results for two modes of variation of U with Ug= 0. 5:
1) o4 = 0.003, 2) o = —0. 004, The characteristic parameters used in
(2) were

L=0.0m, & =0.05m, ' =3m,

%’ = 434mysec, Ty = 3023°K, By = 1.5 Wb/m’,

g == 100 ohm™*/m™,  p’= 10¢ N/m2,

Uy =16.2v, N = 0.0225.

It is clear that a linear variation in U requires essentially nonlinear
variation in R, and the variation in G is also nonlinear. The results show
that there is hysteresis in linear variation from Ugto U and return from

U to Ug by the same law, i.e., to a given voltage there correspond
different values of the velocity, pressure, gas flow rate, and drawn
power,
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